Testing and Evaluation of Grounding Systems: The Revision of the IEEE Std 81

Sakis Meliopoulos

Georgia Power Distinguished Professor School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250, Telephone: 404 894-2926, Fax: 404 894-4641 Email: sakis.m@gatech.edu or sakis@comcast.net

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

Grounding and Bonding is Fundamental for a Safe and Reliable Power System

Lightning and Surge Protection

Stabilize Circuit Potential and Assist in Proper Operation of:

- Communications
- Relaying
- Computers & Sensitive Electronic Equipment

Low Fault Circuit Path Impedance

Safety, Safety, Safety

Improve Quality of Power Service

Grounding, Bonding and Power Quality

"Recent studies indicate that as much as 80% of all failures of sensitive electronic equipment attributed to poor power quality may result from inadequate electrical grounding or wiring on the customer's premises or from interactions with other loads within the premises."

> Wiring and Grounding for Power Quality EPRI CU-2026, March 1990

"However, many power quality problems that occur within customer facilities are related to wiring and grounding practices. Up to 80% of all power quality problems reported by customers are related to wiring and grounding problems within a facility."

Power Quality Assessment Procedure EPRI CU-7529, December 1991

Over the Years Grounding Design Procedures Have Been Developed as Well as Appropriate Standards, Most Notable:

•ANSI/IEEE Std 80-2000, IEEE Guide for Safety in AC Substation Grounding.

•IEEE Std 487-2007, Recommended Practice for the Protection of Wire-Line Communication Facilities Serving Electric Supply Locations.

•IEEE Std 998-1996, IEEE Guide for Direct Lightning Stroke Shielding of Substations.

•IEEE Std 1410-2004, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines.

•IEEE Std 1243-1997, IEEE Guide for Improving the Lightning Performance of Transmission Lines.

•National Electrical Code.

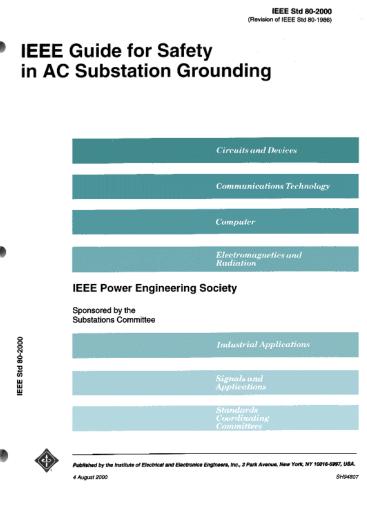
•National Electrical Safety Code.

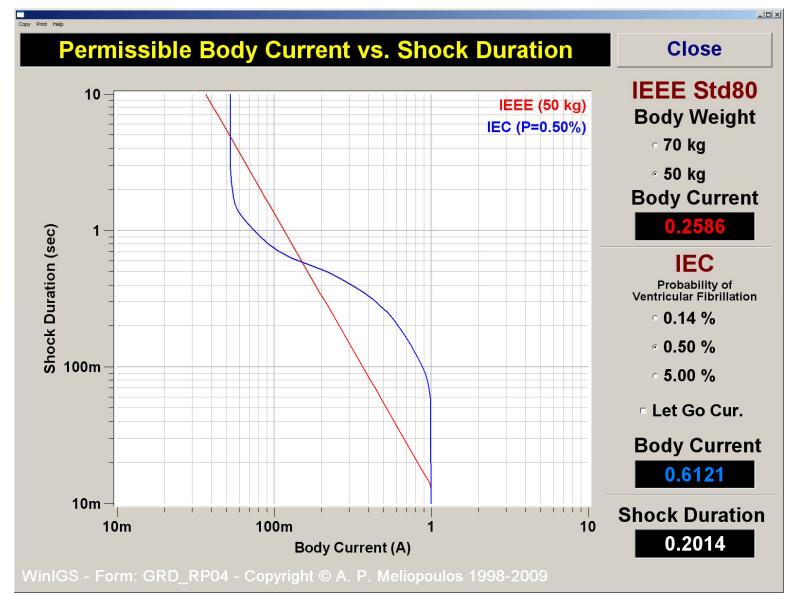
•FIPS 94 and Derivatives.

For the Purpose of Verifying Designs, Testing Procedures have Been also Developed. Most Notable:

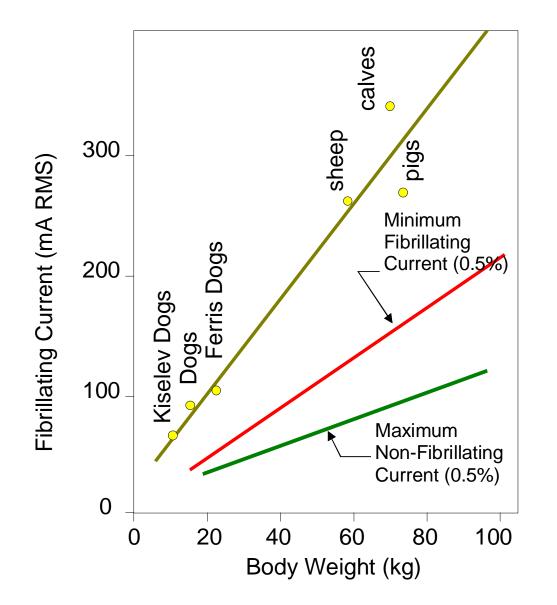
•ANSI/IEEE Std 81-1983, IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Ground System.

•ANSI/IEEE Std 81.2-1991, IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems.


The History of IEEE Std 80

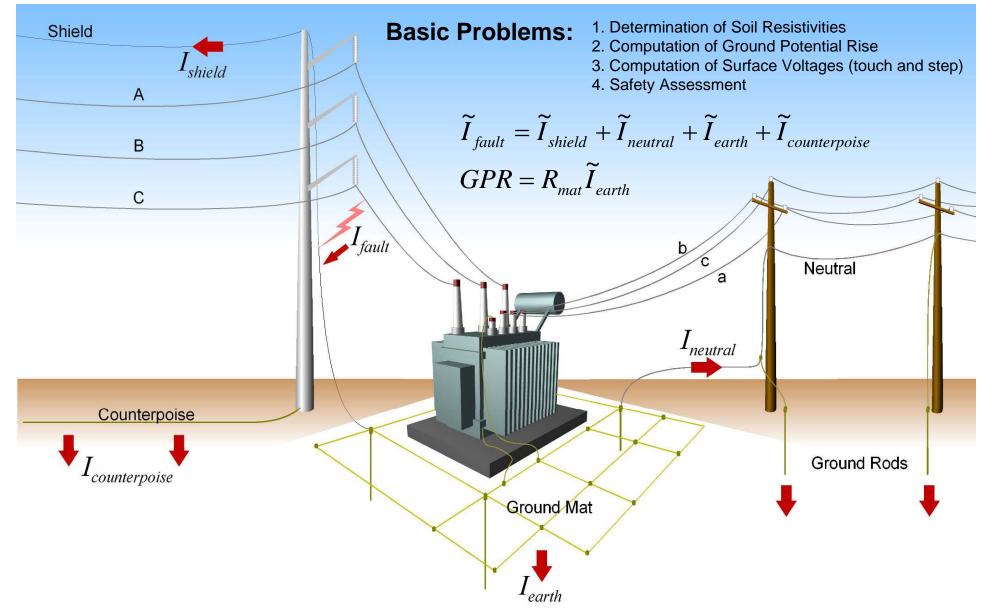

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

The History of IEEE Std 80



Basis of Standards: IEEE 80 & IEC

IEEE Std 80, 1986 Edition



Value of Constant k for Effective RMS Values of I_B :

$$k = I_b \sqrt{t_s}$$

 $k_{50} = 0.116$ (Non-Fibrillating, 0.5%) $k_{50} = 0.185$ (Fibrillating, 0.5%) $k_{70} = 0.157$ (Non-Fibrillating, 0.5%) $k_{70} = 0.263$ (Fibrillating, 0.5%)

Earth Current, Ground Potential Rise, Touch & Step

Verification - Measurements

Key Fact: Target Values Must be Determined in Design Phase

The History of the IEEE Std 81

First Edition: IEEE Std 81 – 1962

Revision:

ANSI/IEEE Std 81-1983 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

To Address Issues Related to Large Grounding Systems or Systems in Congested Areas:

IEEE Std 81.2-1991 IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems

All of Above Standards were sponsored by:

Power System Instrumentation and Measurement Committee Of the IEEE Power Engineering Society

In the period 2003-2004, I served as the Chair of the Substations Committee of the IEEE Power Engineering Society. I initiated and succeeded in transferring sponsorship of the standard to the Substations Committee with the plan to combine the two standards into one single standard. The unified standard has been developed in committee (working group E6, Chaired by Dennis DeCosta) and we expect to ballot it within the next 12 months.

ANSI/IEEE Std 81-1983 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

- 1. Purpose
- 2. Scope
- 3. Objectives of Tests
- 4. Definitions.
- 5. Safety Precautions While Making Ground Tests
- 6. General Considerations of the Problems Related to Measurements
 - 6.1 Complexities
 - 6.2 Test Electrodes
 - 6.3 Stray Direct Currents
 - 6.4 Stray Alternating Currents
 - 6.5 Reactive Component of Impedance of a Large Grounding System6.6Coupling Between Test Leads6.6
 - 6.7 Buried Metallic Objects
- 7. Earth Resistivity
- 8. Ground Impedance
 - 8.1 General
 - 8.2 Methods of Measuring Ground Impedance
 - 8.3 Testing the Integrity of the Ground Grid
 - 8.4 Instrumentation
- 9. Earth Potential
 - 9.1 Equipotential Lines
 - 9.2 Potential Contour Surveys
 - 9.3 Step and Touch Voltages
- 10. Transient Impedance
- 11. Model Tests
- 12. Instrumentation
- 13. Practical Aspects of Measurements
- Annex A Nonuniform Soils
- Annex B Determination of an Earth Model
- Annex C Theory of the Fall of Potential Method
- Annex D Bibliography

IEEE Std 81.2-1991 IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems

It was developed to address the special problems and issues associated with testing large interconnected grounding systems

- 1. Purpose
- 2. Scope
- 3. References
- 4. Safety Practices
- 5. Factors Effecting Grounding System Measurements
- 6. Preliminary Planning and Procedures
- 7. Earth-Return Mutual Effects When Measuring Grounding-System Impedance
 - 7.1 Introduction
 - 7.2 Measurement Error Due to Earth Mutual Resistances
 - 7.3 Measurement Error Due to AC Mutual Coupling
 - 7.4 Mutual Coupling to Potential Lead From Extended Ground Conductors
- 8. Measurement of Low-Impedance Grounding Systems by Test-Current Injection
 - 8.1 Introduction
 - 8.2 Signal Generator and Power Amplifier Source
 - 8.3 Portable Power-Generator Source
 - 8.4 Power System Low-Voltage Source
- 9. Measurement of Low-Impedance Grounding Systems by Power System Staged Faults
- 10. Current Distribution in Extended Grounding Systems
 - 10.1 Introduction
 - 10.2 Test Considerations
 - 10.3 Analysis of Current Distribution in a Grounding System
 - 10.4 Induced Current in the Angled Overhead Ground Wire
 - 10.5 Current Distribution During a Staged Fault Test
- 11. Transfer Impedances to Communication or Control Cables
- 12. Step, Touch, and Voltage-Profile Measurements
- 13. Instrumentation Components
 - 13.5 Fast Fourier Transform Analyzer
 - 13.6 Sine Wave Network Analyzer
 - 13.7 Staged Fault
 - 13.11 Low-Power Random Noise Source
 - 13.14 Pulse Generator
 - 13.15 Current Transformer (CT)
 - 13.16 Resistive Shunt
 - 13.17 Inductive Current Pickup
 - 13.18 Hall-Effect Probe
- 14. Instrument Performance Parameters
- 15. Bibliography

Present Revision IEEE Std 81-XXXX Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

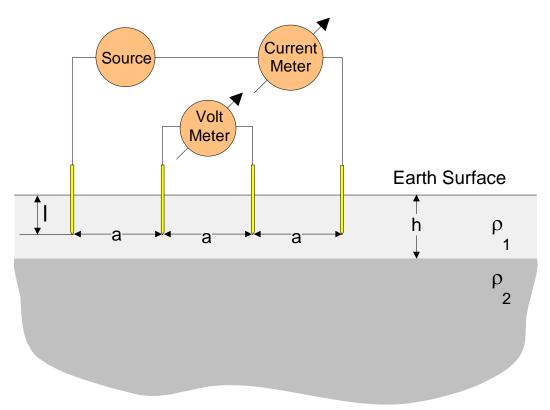
- 1. Overview
 - 1.1 Purpose
 - 1.2 Scope
- 2. References
- 3. Definitions
- 4. Test Objectives
- 5. Safety Precautions While Making Ground Tests
 - 5.1 Station Ground Tests
 - 5.2 Special Considerations
- 6. General Considerations on the Problems Related to Measurement
- 7. Earth Resistivity
 - 7.1 General
 - 7.2 Methods of Measuring Earth Resistivity
 - 7.3 Interpretation of Measurements
 - 7.4 Guidance on performing field measurements
- 8. Ground Impedance
- 9. Testing Local Potential Differences
- 10. Integrity of Grounding Systems
- 11. Current Splits
- 12. Transient Impedance of Grounding System
- 13. Other

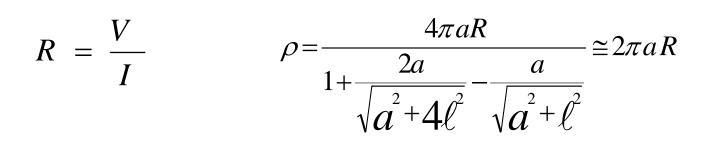
ANNEX A (INFORMATIVE) SURFACE MATERIAL RESISTIVITY

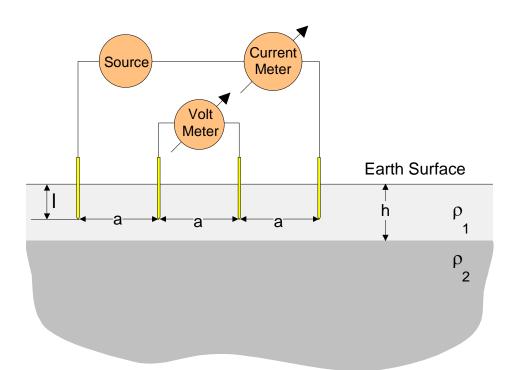
ANNEX B - INSTRUMENTATION

- B.1. Megohm Meter
- B.2. Clamp-On Ground Tester
- B.3. Smart Ground Meter
- B.4. Transient Impedance Meter

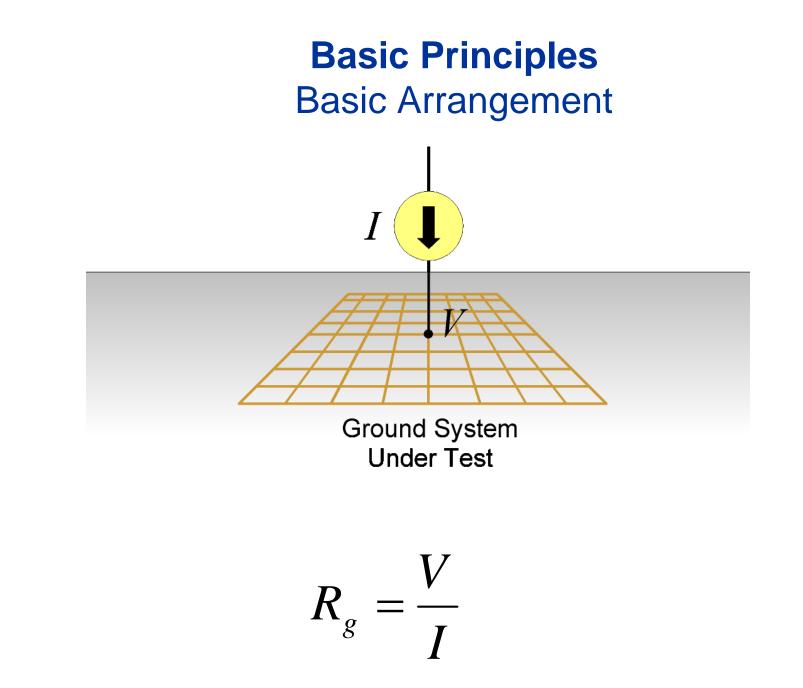
Grounding System Measurements



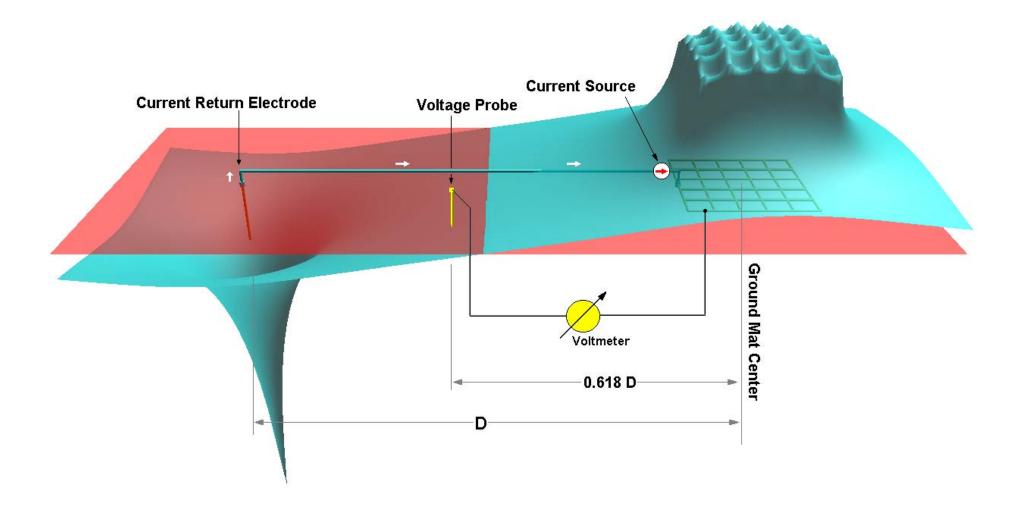



- Ground Impedance Measurement Methods
 - The 2-Point Method The 3-Point Method The Fall of Potential Method The 62% Rule The Ratio Method The Ratio Method The Intersecting Curve Method Staged Fault Tests Driving Point Impedance The SGM Method
 - Continuity/Integrity Testing
 - Soil Resistivity Measurements
 - Touch and Step Voltages
 - Other Tests (Tower/Pole Ground, Transfer V.)

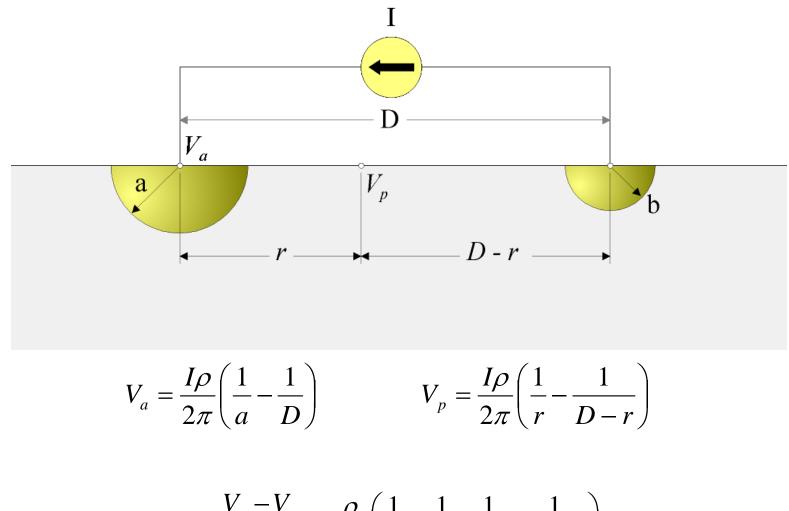
Four Point – Wenner Method



Limitations of the Wenner Method



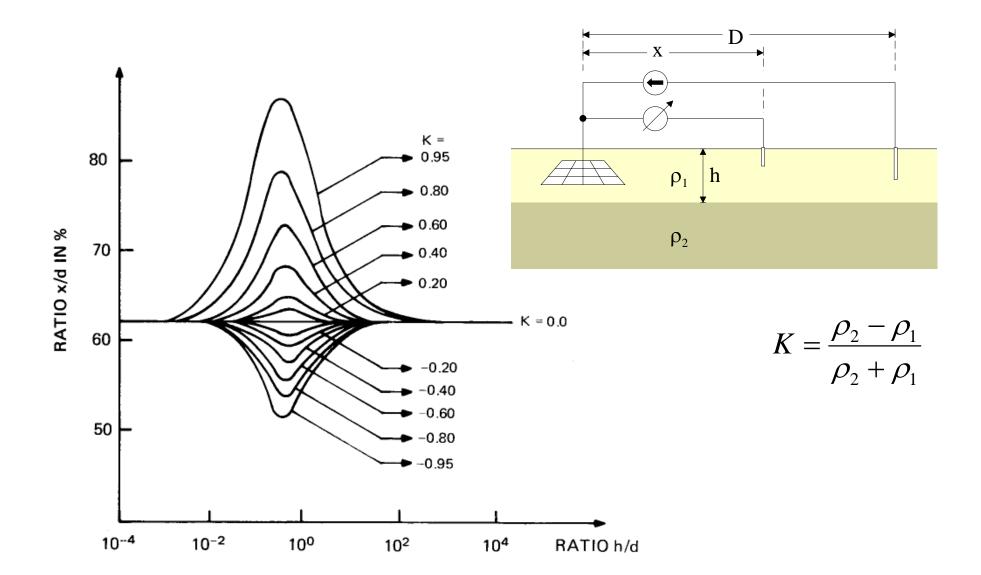
$$V_m = RI - r_e aI - jx_e aI \qquad \qquad \frac{V_m}{I} = \frac{\rho}{2\pi a} - r_e a - jx_e a$$


Example: Soil of 10 Ohm.meter, separation 300 feet, measurements at 150 Hz. Compute error

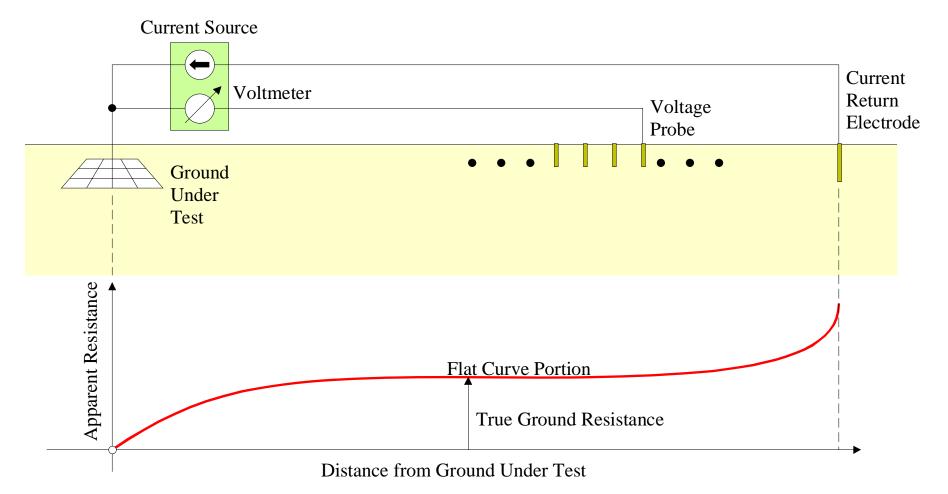
The Fall of Potential Method The "62%" Rule

Optimal Voltage Probe Location – The 62% Rule

$$R_{a} = \frac{V_{a} - V_{p}}{I} = \frac{\rho}{2\pi} \left(\frac{1}{a} - \frac{1}{D} - \frac{1}{r} + \frac{1}{D - r} \right)$$

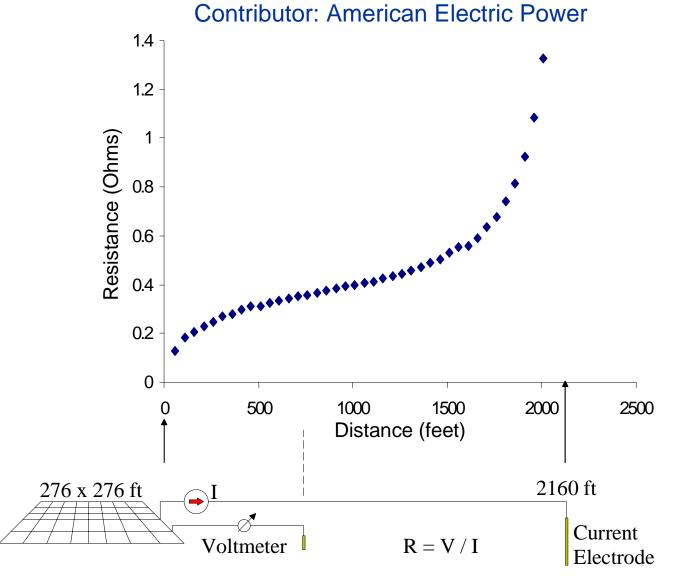

Optimal Voltage Probe Location – The 62% Rule

Compare
$$\begin{cases} R_g = \frac{V_a}{I} = \frac{\rho}{2\pi a} \\ R_a = \frac{V_a - V_p}{I} = \frac{\rho}{2\pi} \left(\frac{1}{a} - \frac{1}{D} - \frac{1}{r} + \frac{1}{D - r}\right) \end{cases}$$


$$R_a = R_g$$
 requires that: $\frac{1}{D} + \frac{1}{r} - \frac{1}{D-r} = 0$

Solving for r/D yields:
$$\frac{r}{D} = \frac{-1 \pm \sqrt{5}}{2} = 0.618034$$

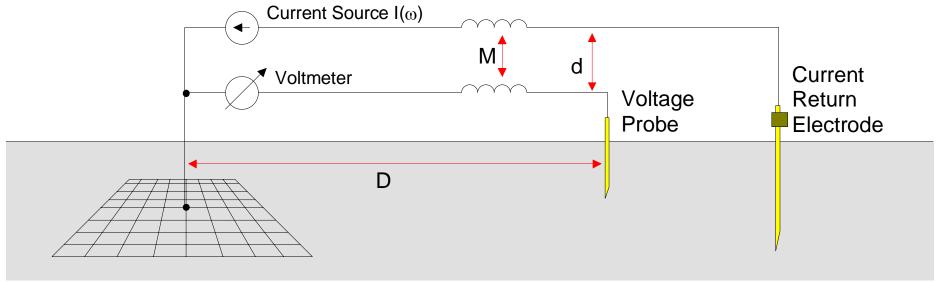
The Fall of Potential Method – 62% Rule and Two Layer Soil



Ground Impedance Measurements The Fall of Potential Method – Measurement Process THEORY

The Fall of Potential Method

Earth Voltage Distribution - Actual Measurements



The Fall of Potential Method

Factors Affecting Ground Impedance Measurement

- Difficulty reaching true remote earth reference voltage
- Effect of Auxiliary Electrode Location (Earth Current Return)
- Size and location of voltage probes
- Interaction Between Instrumentation Wires
- Interference from Overhead Lines and their Grounding
- Background 60 Hz Voltage and Harmonics
- Ground Impedance Magnitude

Fall of Potential Method Errors Interaction between Instrumentation Wires

Ground System Under Test

$$M = l \frac{\mu_0}{2\pi} \ln\left(\frac{D_e}{d}\right) \quad \text{where} \quad D_e = 2160 \sqrt{\frac{\rho}{f}}$$
(d,De in feet)

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

The Fall of Potential Method

Interaction between Instrumentation Wires

500.00 feet Length Current 1.00 Amperes Rho 100.00 Ohm-meters Frequency 90.00 Hz 10.00 feet d D_e 2276.84 feet 0.0001437 Henries Μ Voltage 0.081 Volts

Induced Voltage Computation Example:

Ground Mat Voltage:

Induced Voltage on Lead:

Measured Voltage:

Measured Impedance:

Measurement Error:

$$V = RI(\omega)$$

$$V_{md} = j\omega MI(\omega)$$

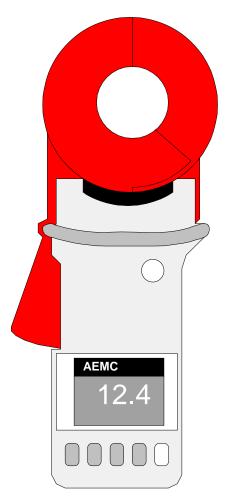
$$V_m = V + V_{ind}$$

$$Z_m = \frac{V_m}{I(\omega)}$$

$$Z_m - R$$

 $\frac{Z_m - R}{R} \times 100\%$

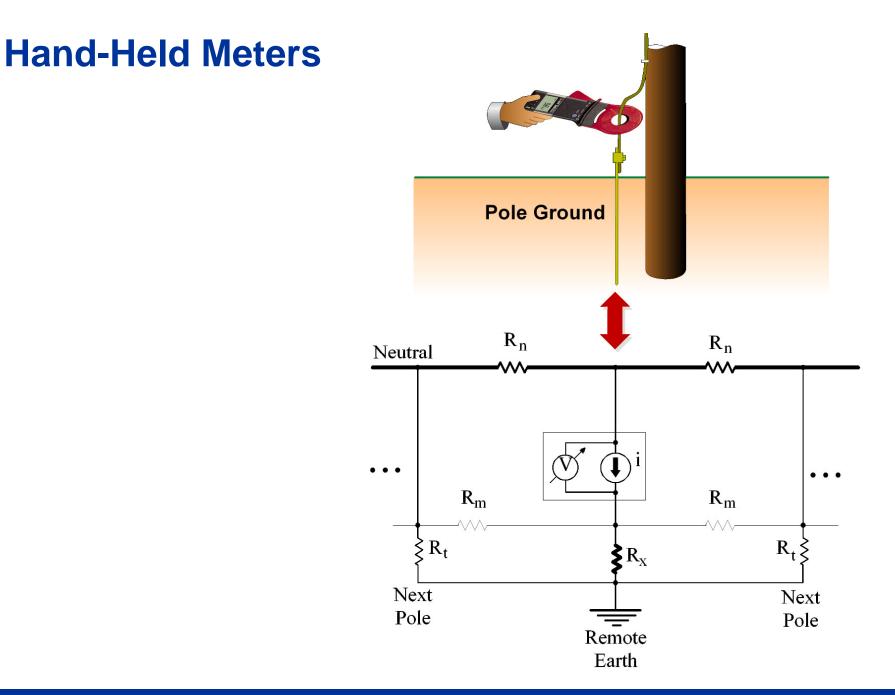
The Fall of Potential Method


Interaction between Instrumentation Wires

	age compatat		
Length	500.00	feet	
Current	1.00	Amperes	
Rho	100.00	Ohm-meters	
Frequency	90.00	Hz	
d	10.00	feet	
D _e	2276.84	feet	
M	0.0001437	Henries	
Voltage	0.081	Volts	

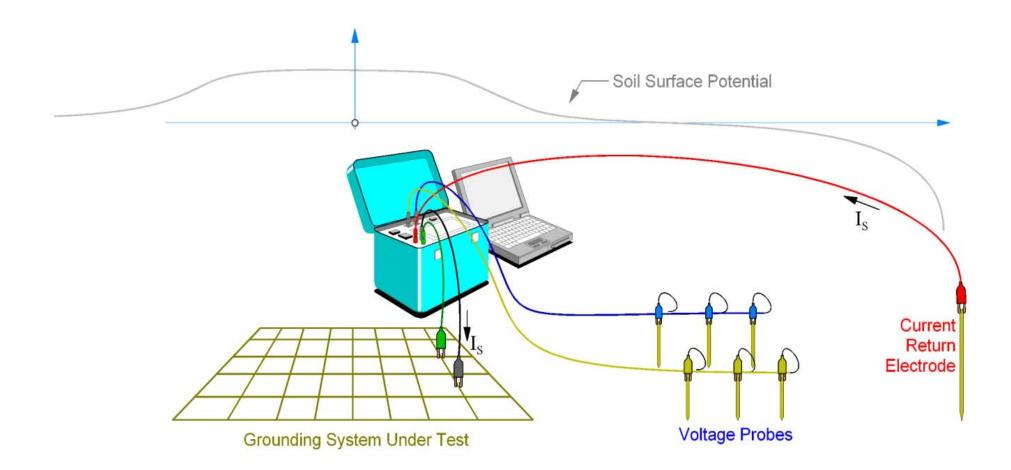
Induced Voltage Computation Example:

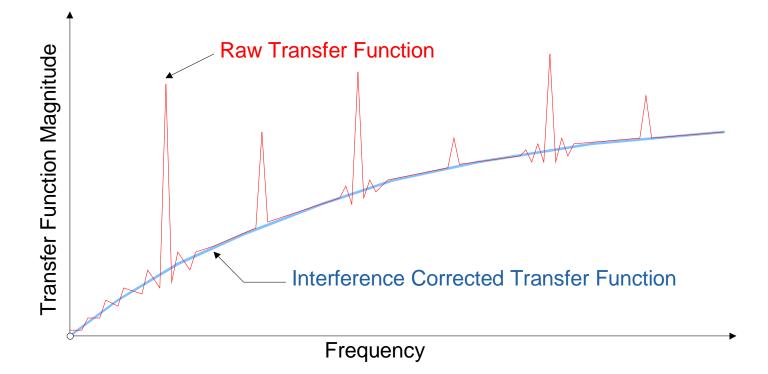
R	Magn. Error	Phase Error
10.0	0.006%	0.65 Deg
1.0	0.6%	6.49 Deg
0.1	51%	48.68 Deg


Driving Point Impedance Meters: Hand-Held Meters Easy to Use But Limited Applications

LEM GEO MODEL 15 - Ground Resistance Tester Measurement Range: 0.025 ohms to 1500 ohms at 1.667 kHz

AEMC

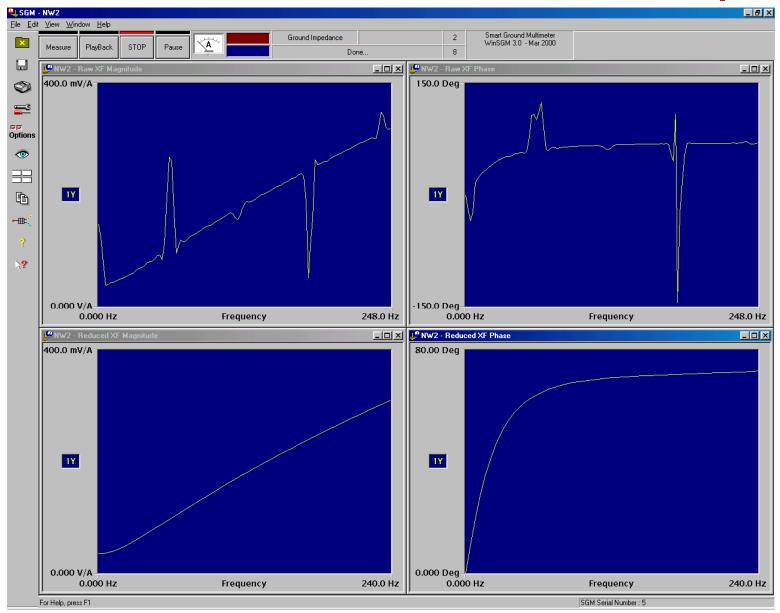

The Smart Ground Multimeter (SGM) Method: Model Based Measurement Instrument Presently Available Functions


User Selected 250V or 500V Internal Switchable Source

- 1. Ground (System) Impedance Meter
- 2. Touch Voltage Meter
- 3. Step Voltage Meter
- 4. Tower Ground Resistance Meter
- 5. Soil Resistivity Meter
- 6. Ground Mat Impedance
- 7. Transfer Voltage Meter
- 8. Low Impedance/Continuity Meter
- 9. Fall of Potential Method
- 10. Oscilloscopic Function
- 11. Pole Ground

Smart Ground Multimeter Ground Impedance Function Illustration of Probe Placement and SGM Connections

60 Hz and Harmonic Interference Correction



Correction Method: Based on quadratic rational transfer function fitting

Minimize:
$$\sum_{k} W_{k} (\hat{H}(j\omega_{k}) - H(j\omega_{k}))^{2}$$

where: $\hat{H}(s) = a_{0} + a_{1}s + a_{2}s^{2}$ or $\hat{H}(s) = \frac{a_{0} + a_{1}s + a_{2}s^{2}}{b_{0} + b_{1}s + b_{2}s^{2}}$

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

60 Hz and Harmonic Interference Example

Grounding System Audit: Objectives

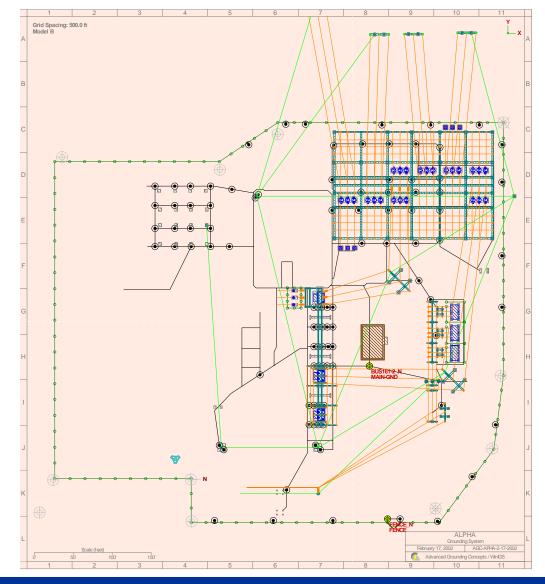
- Verify Design Values
- Verify Safety and Ground Potential Rise
- Verify Construction or Determine Ground Integrity
- Verify Lightning Performance
- Investigate Possible Points of Danger
- Evaluate Possible Ground Enhancements (Cost/Benefit Analysis)

Grounding System Audit: Procedure

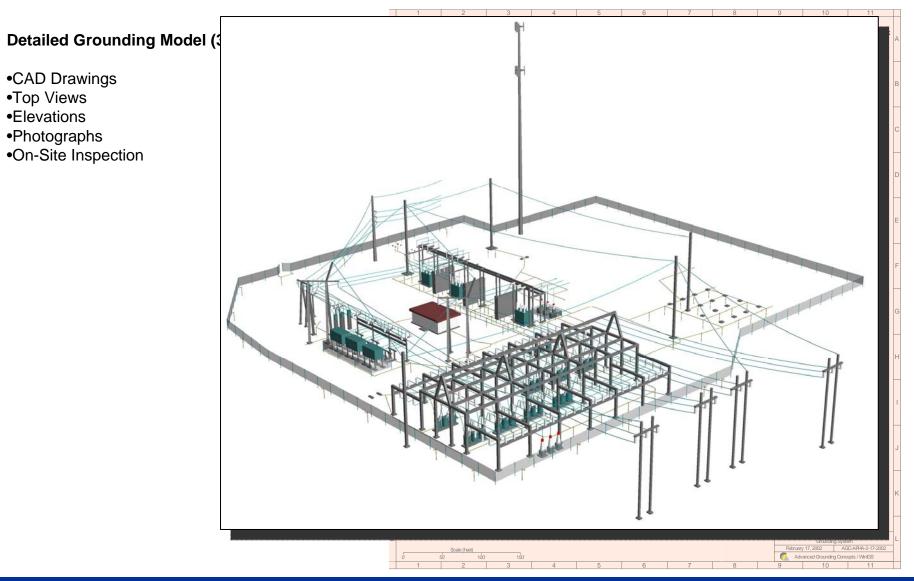
Part 1: Testing

- Create a Facility Model (per drawings)
- Ground System Impedance Measurement
- Facility Ground Resistance Measurement
- Soil Resistivity Measurement
- Point-to-Point Ground Measurements
- Transfer Potential Measurement (as needed)
- Oscilloscopic View of GPR

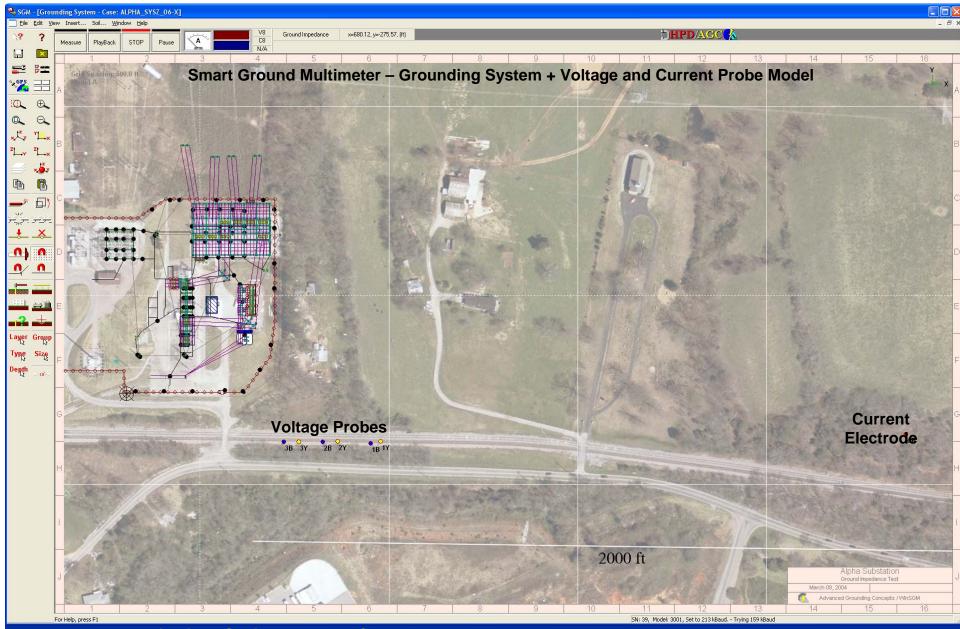
Grounding System Audit: Procedure


Part 2: Model Validation and Analysis

- Ground Model Validation (Compare Model to Measurements)
- Ground Conductor Size Adequacy Assessment
- Safety Assessment (IEEE Std 80 or IEC)
- Lightning Shielding Analysis and Risk Evaluation
- Evaluation of Remedial Measures (as needed)


Grounding System Audit – Testing Detailed Grounding Model

Detailed Grounding Model (3D)

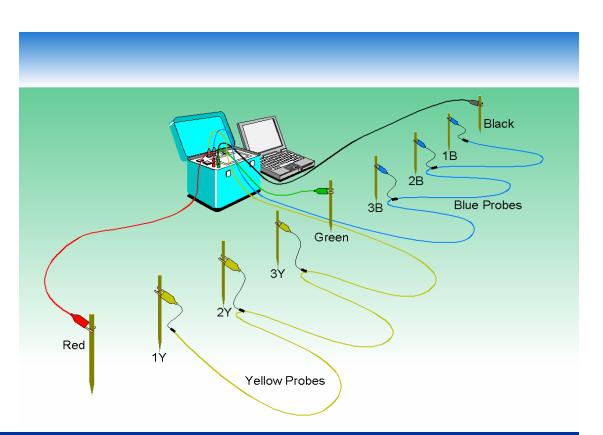

- •CAD Drawings
- •Top Views
- •Elevations
- •Photographs
- •On-Site Inspection

Grounding System Audit – Testing Detailed Grounding Model

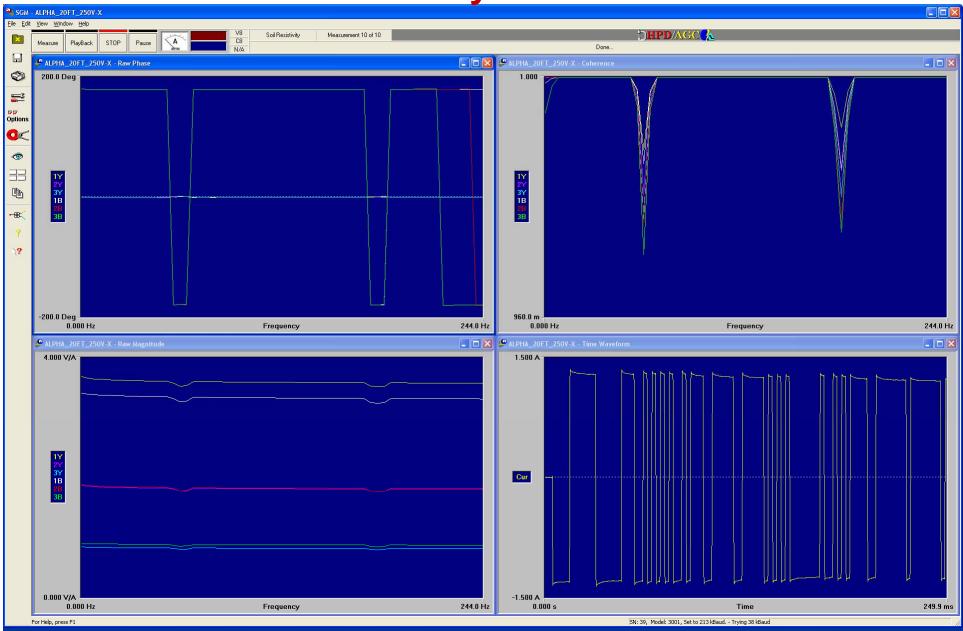
Ground System Impedance Measurement

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

Ground System Impedance Measurement

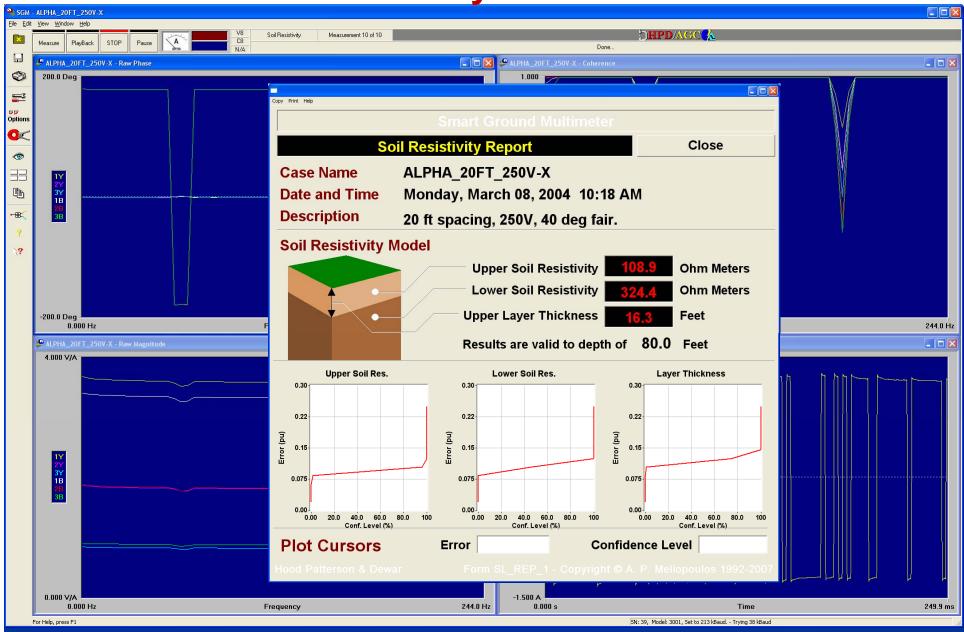

Edit View Incert Soil Window Help ? Measure PlayBack STOP Pause V8 RA BOUND REAL PLAYBACK STOP Pause RA			₿ HPD /AC	IC 🔥	
F= Gd Strating 500.0 th Smart Ground Multimeter – Grounding	System	+ Voltage and	d Current	Probe Mode	4 15 16
		- for the part			
The B Copy Print Help					r i
SGM Smart Gi				Cancel	OK
	Set Probes Using GPS				DMS Format
				ongitude ——	Distance —
	Deg	Minutes	Deg	Minutes	from SGM (feet)
SGM	N90	1.95400	W11	51.87000	
Reference	N90	1.99500	W11	51.90800	311.9
Update Drawing		Update from	n Drawing		
Group Size	N90	1.71201	W11	51.67400	1760.8
Probe 1Y	N90	2.11300	W11	51.88800	971.9
G Probe 2Y	N90	2.10400	W11	51.88300	915.3
Voltage 3B ^o 3Y ^o 2t Probe 3Y	N90	2.08900	W11	51.88500	825.1
H Probe 1B	N90	2.09500	W11	51.91100	881.7
Probe 2B	N90	2.08100	W11	51.89800	785.2
Probe 3B	N90	2.07200	W11	51.88900	724.3
Hood Patterson & Dewa	ar	Form GPS_COC	RD - Copy	right © A. P. Meli	opoulos 1992-2007
		K. Kon	dell'	KOR	AlpTI2 SUDStattOTI Ground Impedance Test tarch 08, 2004 Advanced Grounding Concepts /WinSGM
1 2 3 4 5 6 7 8	9	101 101	1 12 9. Model: 3001. Set to 213	kBaud Trying 159 kBaud	4 15 16

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting


Grounding System Audit – Testing Soil Resistivity Measurement

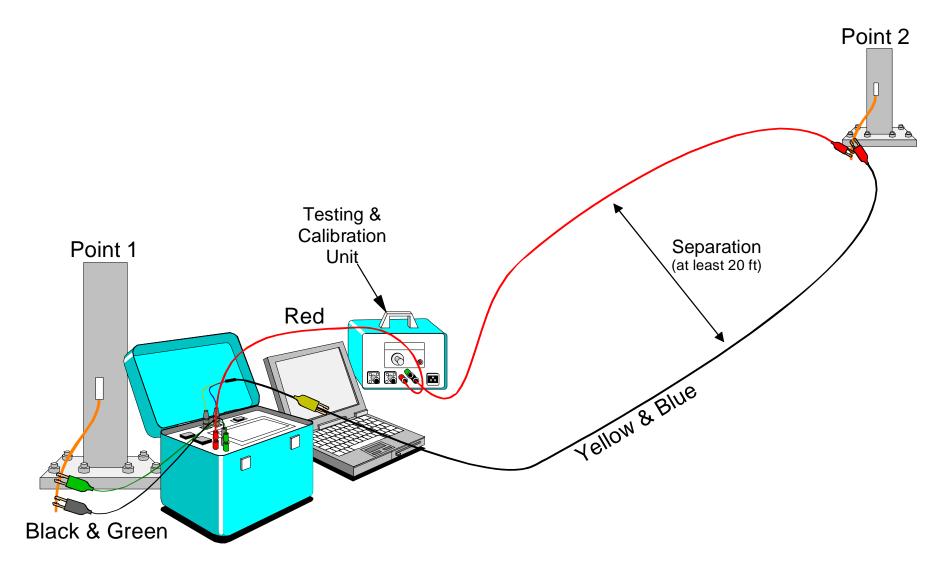
Smart Ground Multimeter

- •Based on extension of the four pin method
- •Measures ground potential differences between six voltage
- Uses estimation based analysis to fit the measurements to the measurement system model
- Provides Measurement Interpretation (Two Layer Model)



Soil Resistivity Measurement

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting **43**


Soil Resistivity Measurement

44

IEEE Industry Applications Society – Atlanta Chapter January 19, 2010 Meeting

Grounding System Audit – Testing Point-to-Point Ground Measurements

Grounding System Audit – Testing Point-to-Point Ground Measurements

	Fig #	Test Point Locations	Computed Resistance (mΩ)	Measured Resistance (mΩ)	Measured Reactance (mΩ)	nt 2
	D3	13 kV transformer to fence gate ground (points K01-K02)	1315	433.2	437.1	
	D4	13 kV transformer to fence pig-tail ground	1315	437.2	442.0	
	D5	13 kV transformer to TVA XFRM 2 (points K01-K03)	8.41	6.535	15.09	
Point 1	D6	Control House to Fence - Southeast Corner (points K04-K05)	1166.4	1619.2	1620.0	
	D7	Control House to Nixon Line PT - Phase C (points K04-K06)	6.77	8.704	15.18	
	D10	Control House to 161 kV Breaker #988 (points K04-K07)	7.29	8.196	15.28	
	D13	Control House to Breaker #968 (points K04-K08)	6.31	8.279	15.31	
	D17	Control House to Breaker #934 (points K04-K10)	7.71	8.209	14.08	
	D20	Control House to 161 kV Instrument PT - Phase B (points K04-K11)	6.87	8.475	14.50	
	D22	Control House to Breaker #954 (points K04-K09)	5.98	8.587	15.79	
	D26	Control House to Capacitor Bank Fence (points K04-K15)	5.70	117.9	130.6	
	D29	Control House to Capacitor Bank Sectionalizer Switch 2 Ground (points K04-K16)	9.48	12.99	33.36	
Black & Green	D30	Control House to Capacitor Bank Sectionalizer Switch 3 Ground (points K04-K17)	12.21	13.21	34.51	